Passage 3

 N_2O_3 is an unstable oxide of nitrogen and it decomposes into NO(g) and $NO_2(g)$ where $NO_2(g)$ is further dimerise into N_2O_4 as

(i)
$$N_2O_3(g) \rightleftharpoons NO_2(g) + NO(g)$$
; $K_{p_1} = 2.5 \text{ bar}$

$$K_{p_1} = 2.5 \text{ bar}$$

(ii)
$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

$$K_{p_2}$$

A flask is initially filled with pure N2O3(g) having pressure 2 bar and equilibria was established.

At equilibrium partial pressure of NO(g) was found to be 1.5 bar.

1. The equilibrium partial pressure of $N_2O_3(g)$

(a) 0.5 bar 🕊

(b) 1.0 bar

(c) 1.5 bar

(d) 0.1 bar

2. The equilibrium partial pressure of $NO_2(g)$ is:

(a) 0.066 bar

(b) 0.133 bar

(c) 0.423 bar

3. The value of K_{p_2} is:

(a) 0.16 bar^{-1}

(b) 0.32 bar^{-1}

(d) 0.64 bar⁻¹

$$N_2O_3(g) \rightleftharpoons NO_2(g) + NO(g)$$
; $K_{p_1} = 2.5$ bar
 $2NO_2(g) \rightleftharpoons N_2O_4(g)$; K_{p_2}

$$x-y y/2$$

$$P_{NO} = x = 1.5 b$$

$$K_{p_1} = \frac{P_{NO} \cdot P_{NO_2}}{P_{N_2O_3}}$$

$$2.5 = \frac{x(x-y)}{2-x} = \frac{1.5(1.5-y)}{2-1.5} = 4.5-3y$$

$$\Rightarrow$$
 $y = \frac{2}{3} bar$

(1)
$$P_{\text{N}_2\text{O}_3} = 2 - x = 2 - 4.5 = 0.5 \text{ b}$$

(2)
$$P_{\text{NO}_2} = x - y = 1.5 - \frac{2}{3} = \frac{2.5}{3} \text{ b}$$

(3)
$$K_{p_2} = \frac{y}{2(x-y)^2} = \frac{2/3}{2\left(\frac{2.5}{3}\right)^2} = 0.48 \text{ bar}^{-1}$$